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An alternative formulation for multidimensional scalar advection
is derived following both a conservative and a variational approach,
by applying the least-squares mathod simply generalized to the
space-time domain. ln the space-time framework pure advection is
regarded as a process involving only anisotropic diffusion along
space-time characteristics. The resulting paraholic-type equation
lends itself to a straightforward Galerkin integration that yields a
symmetric, diagonally dominant, positive, and unconditionally sta-
ble operator. The conditions of eguivalence hetween the advective
problem and its parabolized counterpart are established by using
standard variational theory in anisotropic Sobalev spaces specially
designed for advection equations. To demonstrate the general appli-
cability of the method, “parabolized advection” is simulated in 2D
manifolds embedded in 3D and 4D space-time domains. o 1sss
Academic Press, Inc.

1. INTRODUCTION

Numerous attempts have been made during the past two
decades to improve the numerical solution of the deemed com-
plex advection equation. Among various successful techniques,
and unlike a few promising least-squares finite element schemes
[1-2], the early Petrov- and Taylor-Galerkin schemes have now
become sophisiicated enough to provide analysts with very
accurate solvers for first order hyperbolic test problems {3, 4,
7-10}.

However, when applied to transient problems involving non-
homogeneous flow fields, sharp fronts, irregular meshes, and/
or relatively coarse time discretization, these methods may lose
some of their good performances (i.e., stability, accuracy, and
robustness). One major source of problems being the different
discretization of space and time, which prevents the information
from following the characteristics properly, as discussed in
[8, 14].

In this werk we develop and analyze the space-time inte-
grated least-squares (STILS}) approach. In doing so we replace
the advective operator by a diffusive equivalent and adopt a
time-augmented Galerkin framework in order to achieve proper
implementation of the resulting space-time tensor functions.
Apart from simply allowing vse of computationally safe,
steady-state elliptic Galerkin algorithms to solve advective

probiems, the present work addresses also a single concept that
may be relevant 1o both numerical analysis and physics. As
will be shown further on, a streamline diffusion process along
the space-time characteristics arises here naturally from a physi-
cal conservation law and a variational principle, and not from
the specific structure of an integration method of Petrov—Galer-
kin type. Moreover, the space-time setting allows us to take
full advantage of the stabilizing properties of the least-squares
method (see [17]), which makes it possible to convert the hyper-
bolic advection equation into its parabolic diffusien counterpart.
In a way, our method can be seen as a variant of the recent
characteristic streamline diffusion (CSD) [i1, 12, Galerkin
least squares (GLS) [5] or of the streamline upwind full galerkin
(SUFG) [14] methods, but of an easier implementation, because
we neither introduce any extra parameter to be carefully se-
lected, nor use discontinuous in time elements. It is also concep-
tually simpler, because we take full advantage of the space time
framework. However, STILS only works for pure advection
equations, whereas SUFG can also tackle advection-diffusion
ones, and GLS or CSD general symmetric advective-diffusive
systems such as, e.g, Navier—Stokes equations (see [0, 13]).

2. ALTERNATIVE FORMULATION OF ADVECTION

For simplicity, but without loss of generality, we consider
below the source free, scalar advection equation contmonly
expressed as

Bu___ .
E— v-Vu (1)

with advective velocity field v = (v,, v,, v,) function of space
and time coordinates and subject to upstream Dinchlet bound-
ary conditions. Equation (1)—which obviously considers space
and time as two distinct domains—implies that time variations
of the unknown concentration function u are zero when v is
perpendicular to Vu (steady-state regime) and are maximum
when these two vectors are parallel.

‘The underlying trivial condition governing space-time advec-
tion may, however, be better expressed when considering the
4D continuum. In effect, upon defining
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V=(V.8), ¥=@uv =1, (2)

Eq. (1) takes the form
¥-Vu=0 3

which clearly expresses the orthogonality of space-time gradi-
ents and characteristics throughout the space-time domain.
Equation (3) may then be solved using appropriate steady-
state algorithms designed to cure the oscillating behavior of
numerical solutions to hyperbolic problems. As an alternative
to this, a parabolic streamline diffusion equation is developed
below following two distinct lines of reasoning.

Conservative Approach

A possibility to transform the problem in Eq. (3) is to define
the quantity

G=F - Vuv=(v®v]Vu )

which represents a space-time streamline diffusive flux (in the
above equation the sign (&) denotes a tensor product thus making
[% ¢ ¥] a 4 X 4-matrix). Specifying then ‘‘steady-state’” zero
divergence for the above equation yields the conservative
statement

V. (v ®@v1Vu)y=10. (5)

According to Eq. (3)—where ¥ (&) ¥ is seen as an anisotropic
“‘diffusion’” tensor—the basic advective process may now be
regulated by a diffusive-type equation with diffusion acting
only in the direction of ¥. In order to reproduce the advective
effects and the related full penetration of the upstream Dirichlet
“‘hard’” boundary conditions (on space-time inflow boundaries
') into the flow domain, zero Neumann ‘‘soft’”’ conditions
have to be enforced on downstream boundaries (on space-time
outflow boundaries I';). We define precisely these boundaries
below, Hence, and as illustrated in Fig. I, the solution of Eq.
(5) will consist of constant concentration along space-time char-
acteristics and Eq. (3) will be implicitly satisfied.

Variational Approach

Another and perhaps more rigorous way to derive Eq. (3) with
the associated boundary conditions is to perform an integral
variational analysis. Instead of focnsing on Eq. (3) we might
as well consider the least-squares function

7= éjﬂ & Sup, 6)

where {1 is the space-time domain and for which Eq. (3) obvi-
ously yields the absolate minimum 7 = 0.
The minimization of a generalized least-squares statement
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FIG.1. Representation of advection with up and down-stream boundaries
I'y and I'; in space-time.

for an advection-diffusion equation has already been reporied

in [1]. However, due to the presence of diffusion and to unusual

space-time approximations, the developments performed in this

early work are different and somewhat less straightforward.
In effect, minimizing the above functional gives

S = fu & - $u) 8v - Tu) =fu(v-'v"u)(v-€’§u) D
= [, Vo m@uVu=0
an integration by parts results in

o = fréu([V@)V] Vi) - i - L)‘S”V'(I?V@)VJ ) =0,
(&)

where fi is the outer normal unit vector to the space-time bound-
ary I'. Defining now the space-time in- and out-flow boundaries,
M={,nelv - a<ohI,={xEl|v ii>0} we
get that 2 minimum of (6) is obtained when

V- (v®%]Vu) =0, inQ2
with

=y, {e,fu=0), onl,
i )
[F®F]Ve-i=0, onl,
We note here that the Neumann-type condition on I'; may also

be expressed by
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TRV - A=v@vi Vu=@F 0)¥-Vu=0

h

and, since (¥ - @)¥//¥, this condition means that ¥ - Vu=0
on I'; and also on Iy (where ¥ + i # Q) which only reflects
mass conservation. Moreover, it is evident that the above Neu-
mann-type condition also applies to the other domain no-flow
boundaries (I' — 'y — I';), where ¥ - fi = 0.

The equivalence of the classical advection problem with the
STILS-based formulation given in (9) is demonstrated below.

3. EQUIVALENCE OF ADVECTIVE AND
DIFFUSIVE FORMULATIONS

In this section we consider {} as a n-dimensional domain
{n = 4 for space-time) and we omit tildes on space-time vectors.
Moreover, without restricting the generality of the demonstra-
tion, we may take an homogeneous Dirichlet boundary condi-
tion by introducing a source term that we denote by f. We
shall then study the equivalence between the following two
formulations, namely the advective one,

v:-Vu=f, in{}
(10)
u=10, onT
and the diffusive one
V-([v@v]Vi) =V (fv), in}
u =10, onT, (11}
[v@vIn-Vu=fv-n, onl —T,.

Let us note that the downstream boundary condition arises
naturally from the variational formulation. As for the upstream
Dirichlet boundary condition, let us point out that in the space-
time context it covers both the initial condition and the classical
spatial Dirichlet condition. We need some unusual function
spaces especially tailored for the problem. To this end we define

Hv, ) = {u &€ LX) v - Vu € LY}
equipped with the norm
laelll? = flaall® + lv - Vuf%
where || - || designates the usual L norm and v + Vu is to be
interpreted in the generalized sense as a distribution.
Like for standard Sobolev spaces, one easily shows that

H(v, ) is a Hilbert space. To take into account the homoge-
neous Dirichlet boundary condition, we define

Hiv, 0. T)=ueE Hv,M: u=0on [}

Remark 1. In order to make this definition perfectly valid
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we would need to give some sense to # on ;. Indeed one can
build a trace like operator §: H(v, 1) — H™'2(3(}) such that
8(#) = u v - n for smooth . This has already been done in
the case of constant v [16] and can be extended to cover the
general case if {1 is regular enough.

The weak formujation of the diffusive problem (11} is:
Find u & Hy(v, £, I')) such that for all ¢ € Hy(v, 0, T')

[, V0 V) = [ fiv- Vo). (12)

First of all, it is obvious that if & € LX) is the solution of
(10} then u satisfies (12). To see that, one performs the 12 dot-
product of (10) by v - V¢ for an arbitrary ¢ € H(v, {2,
I")). As an hypothesis we shall need the following “‘curved”’
Poincaré style inequality

I CsuchthatVu € Hyv, 0. T), |ull=C|v-Vul. (13)

Remark 2. This inequality is satisfied, for instance, when
v is constant and when the characteristics starting from I', (for
example, straight lines parallel to v as in Fig. 1) fill the whole
domain £}, which is only natwral if the advection problem (10)
is to be well posed. In fact, more generally if (10) is well posed
we have the stability inequality

luli = ClAlL e, ull = Cllv - Vuf.
Sufficient and physically clear conditions for inequality (13) to

be fulfilled are under investigation. The main theorem follows.

TuEOREM. Iff € L} (Q)) and if the curved Poincaré inequal-
ity (13) is fulfilled, problem (12} is well posed.

Proof. OnV = Hyv, {1, I')), define the symmetric bilinear
form a and the linear form / by

atu, $) = [ vV - Ve), 1S = [ fiv V).

They are obviously continuous on V. Moreover, the bilinear
form is coercive, thanks to inequality (13), namely

2
Zz
v-Vu +%—||.u||2

alu, 1) = nv‘vunz%

= min (1.5°)

By the Lax—Milgram lemma, there is a unique solution to (12)
and |||u]]] = C||f], with C a suitable constant. Q.E.D.

Applying this theorem to a finite element subspace V), of
Hy(v, Q,T')), we obtain the well-posedness of the STILS method
presented in this work.
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Let us close this section with a principle example illustrating
the applicability of the method. Consider the following classical
formulation of the scalar transient advection problem with con-
stant velocity v, namely,

v+ u, =1 onle, bl X 10, T[]
u(x,0) = g(x), x€la b[
ula, H=h(), t€0,TI

for which the diffusive formulation (11) is

vy, + 20u, tu, = vf, +f onla, b[ X 10, T

u(x,0) = g(x), xEl]a, b[
ula, r) = h(t), te10, T
vu, + 1, = f, attr =T, xE Ja, b[;

x=5b1<€10,T[

In this case inequality (13) is satisfied (Remark 2), since charac-
teristics starting from the inflow boundary U, fill the whaole
domain (as in Fig. 1), hence allowing proper use of the
STILS method.

Conclusion. Under the assumption that the *‘curved”
Poincaré inequality (13) is fulfilled, we solved the multidimen-
stonal linear, transient, or stationary scalar advection equation
by replacing it by a diffusion one, the weak form of which is
controlled by a coercive bilinear form in a suitable function
space.

4. STANDARD GALERKIN INTEGRATION ANALYSIS

The problem expressed in (9) is now discretized using the
Galerkin method. Time is represented by the Cartesian space
variable { through the mapping

=B, (14)

where 8 is a conversion factor. With the change of variable
{14) the terms in Eq. (9) are redefined as

\’7=(V,ag=éa,), ¥=(v,u;=B) (15)

The introduction of the factor 8 in the system is important.
When the space-time domain is subdivided in finite elements
the size A¢ given to the elements is generally fixed but can
represent arbitrary time steps Az. In order to preserve a consis-
tent metric for the calculations of space-time gradients and
trajectories it is therefore necessary to respect the transforma-
tion (14) and to calculate
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B=AlAs (16)
before assembling the Galerkin finite element equations (see
also [14, 15]).

Matrix Equations

On each element defined by m nodes the unknown function
u is approximated by

u=> N, =N, N,=N(xv20 (17)
n=l]

and the classical weighted residual method applied to our prob-
lem yields the element divergence matrix

N,

- aN, .
Ay = J — P — ,
ik 2 (EJ: o 9xt vy I dﬂ)

(18)

where superscripts { and j are relative to space-time Cartesian
coordinates or, more synthetically,

A = {VN[v®¥] VN}, (19)
where the brackets{ } summarize the operations of element in-
tegration.

One notes here that the structure of the term (19) could
also be obtained with a Petrov—Galerkin type integration of an
advective term, but in this case the weighting function would
only consist of an asymmetric anisotropic perturbation ¥ -
VN. Hence the present formulation is similar to the space-time
GLS method [5], the CSD method [11], or the SUFG method
[14] in which the major term (i.e., the advection) wouid be sup-
pressed!

The assembly of element matrix A¢ for the solution domain
) leads to the system of equations

Au=0 (20)
in which the zero right-hand side indicates the absence of
diffusive fluxes through the domain boundaries. In the above
matrix equation vector u contains the unknown concentrations
throughout {3 as well as the values prescribed at the Dirichlet
space-time boundary conditions.

The problem may then be fully solved by a unique solution
of system (20), but solving practical transient problems as
steady-state generalized problems tums out to be difficult for
general cases. However, given the space-time settings and a
velocity field that is assumed to be constant over each time
step, the final solution can be safely marched in time because
space-time world-lines always have a positive component in
the direction of time (i.e., 8 > 0). In doing so matrix A of
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system {20} is established for a single space-time layer of width

Afto give
- _|P Q woy
All - [R s:|(u:+m) - 0‘

where the vector u includes now only the known nodal value
at time ¢ and the unknowns at time ¢ + At when linear or
multilinear elements are used in 2, 3, or 4D. Hence the solution
for the time step is obtained by solving the reduced system

1)

Su'*¥ = —Ru' (22)

and is used to update the flow field or is just fed back into the
system until the final time is reached. We note here that matrix
S ahove is symmetric, positive definite, and therefore the corre-
sponding linear system can be solved with particularly efficient
elliptic solvers.

[ v v, B vi &
24—+ E 4B
3 2 3 3 6
2 2
* vy BUI 18_
—— +_
- 3 2 3
A=
* *
sym *

Dividing by 8? and intreducing the Courant number Cr =
v,/ one obtains the adimensional form

[ o ool
A
372 36

* Cr? Cr 1
_—_+_
N E
A=
% *
sym #

and after assembly of p elements the tridiagonal (p + 1) X
(p + 1) matrices of system (22) produce the typical j* equation

(1 = 2CrHufts + 4(1 + Crijul*® + (1 — 2Cr)ulty

J+1
= (I +3Cr+ Criui_, (25)

A
g=pt 111 A
4
aj?H ) wh wfltM J
—_— r
E / T3
8 ' A
& ; ' 1]
2 ' .9
jat d r  Ax
u ; -1 /3 Jl uj‘+ 1
; space-time —.___
! characteristics
>
x
Distance [m]

FIG. 2. Bilinear space-time layer for stability analysis.

Computational Behavior

In order to assess the computational properties of the pro-
posed method and compare them to other schemes, we constder
below a 2D (x, {) space-time layer discretized in bilinear square
elements (Ax = A{) as depicted in Fig. 2. After integration,
each element yields the 4 X 4 matrix

vk e g wd gt
6 2 6 6 3
vi g _2+,BUX_BI
6 3 2 6
. . (23)
2
vy Boc B2 v B
32 3 36
2 2
# vi_Bu._ B
3 2 3 J
I B NN N
6 2 6 6 3
e 1 _Cr o 1
6 3 6 2 6
2 i (24)
Cr Cr 1 Cr 1
LA - 4=
3 72 3 3 6
crr Ccr 1
%
_m__tr__
3 2 '3

+ 22 — Criut+ (1 —~ 3Cr + Criuly,.

Interestingly enough, for this simplified case, the above typical
equation is the same as the one derived in [1] following a fairly
different approach, although based on the least-squares method,



188

TABLE 1

Phase Errors A in Units of Wavelength
and Damping Factor & after One Oscillation
of Each Mode

Cr ¢ A G
02 ni4 0.0061 0.9717
w2 0.0544 0.7462
3a/4 0.2923 0.2707
0.5 nf4 0.0251 0.9237
al2 0.0977 0.5220
3n/4 0.2479 0.0910
0.9 n/4 0.0650 0.8447
wi2 . 0.1825 0.4030
3n/d 0.2371 0.1074
12 w4 0.1096 0.7803
mi2 0.2485 0.3775
3n/4 0.2926 0.1703
L& /4 0.1663 0.7009
ni2 0.3288 0.3795
en/4 0.3880 0.2708
2.0 w4 0.2211 0.6371
w2 0.3976 0.4000
37/4 0.4721 0.3618

in which neither a standard Galerkin integration is performed
nor a steady-state anisotropic diffusion concept appears. Substi-
tuting in this recurrent relation a Fourier mode ¢™ (with wave
number k and wavelength A = 27/k) so that u} = a(r)e™™,
one obtains the eigenvalue v = a(t + Ar}/a(t), namely,

L2 Cri+ (1 +Crhcos 0 —i3Crsin @
24+2Cr24+ (1 —2CrHcos

(26)

where 8 = k Ax = 2x/n {n = A/Ax) is the phase angle. It is
easily seen that the scheme in Eq. (25) is unconditionally stable
(i.e., |y| = 1V 6, Cr). After a complete oscillation the amplifi-
cation factor and the phase error of the Fourier mode can be
calculated by

_ cos”'(Re(y/ |y )

= wmecr A = |
G = [ylmee, aCr

(27

for different @ and Cr values. Table I indicates that the proposed
STILS-Galerkin method compares reasonably well with more
sophisticated Petrov- and Taylor-Galerkin schemes (see,
for example, [7, 9])—at least within their operational range
Cr < 1 and specially for the domain of realistic space discretiza-
tion 6 = w/4 (requiring a wavelength to be discretized by
n = § elements).

The above classical Fourier analysis provides valuable in- -

sights to solution accuracy and stability. Nevertheless, our opin-
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ion is that this type of theoretical analysis does not take into
account all of the numerical mechanisms involved in the practi-
cal solution process.

To better visualize the gain in computacional robustness of
the STILS-Galerkin approach, a complementary——and perhaps
more realistic—stability analysis may indeed be performed on
the full amplification matrix G that actually time marches the
solution. The spectral norm of this matrix gives an indication
on how fast over- or undershooting soluticn perturbations can
be potentially amplified during time stepping. From system
(22) we derive, assuming a constant coefficient problem,

G=-8"'R (28)
Unlike the theoretical amplification factor in Eq. (26) which
depends on two variables, we can compute |/G| as a function
of Cr only. Figure 3 displays a comparison of the function
IG(Cr}|| for the standard Crank-Nicolson—Galerkin (CNG),
streamline-upwind-Petrov—Galerkin (SUP(G) [4], and Crank—
Nicolson—-Taylor—Galerkin {CNTG) [7] schemes. In these cal-
culations we used p = 20 bilinear elements, |G| being not
significantly influenced by p for p > 10. The amplification
matrix for the CNG, SUPG, and CNTG schemes can be found
in [15], together with some comments on the fact that [|G|| is
never smaller than one for advective schemes.

Discussion

It follows from Fig. 3 that the proposed parabolic space-
time formulation of advection leads to a scheme that suffers
relatively low computational amplification of errors over a prac-
tical range of Cr numbers. Regarding the dramatic behavior of
the CNTG amplification function, it might not be useless to

ZOT ] o
F
&
z
15
L
= $°
8 107
5 -
STILS
1 4
0 L) T 1] 1
0 1 2 3 4
crid

FI1G. 3. Comparison of the norm of the amplification matrix G(Cr) for
various advection schemes.
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low conductivity layer / high transmissivity =TS m
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9

e

Ax
\sv:loo m Y100 m

FIG. 4. Heterogencous and fractured system: (a) domain structure and discretization; {b) input Laplacian flow field (equipotentials ¥ and streamlines) for
advection simulation.

o, z,0=0

FIG. 5. 3D space-time representation of heterogeneities with characteristics (labeled ¥), finite element **stab™ of width AZ = 8 Ar and domain boundaries.
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7
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FIG. 6. Fractured “‘plug-flow”’ solutions: (a) after five time steps (#* = 10,000 s); {b) after 10 time steps (+* = 20,000 s).

mention that the CNTG unconditional stability arrived at in [7]
using the Fourier mode analysis remains purely theoretical.
As a matter of fact, the 1D CNTG matrix system becoming
increasingly ill-conditioned for increasing Cr values in the
range 0.5 << Cr < 1 (with a singularity at Cr = 1) yields the
asymptotic evolution of the curve |G(Cr)|. Such a behavior
clearly warns for the now well-experienced blowing up of
instabilities, despite the higher orders of accuracy achieved by
Taylor-Galerkin methods.

Obviously, the Fourier mode analysis ignores the “‘real,”’
computational behavior of the CNTG scheme, which must un-
fortunately be used only in problems where a strict control over
Cr is possible and affordable. Alternatively, the contemporary
highly accurate Petrov~Galerkin schemes might as well be
affected by this phenomenon. The latter seriously jeopardizes
the implementation of these sophisticated methods for practical
multidimensional problems (i.e., irregular and coarse meshes,
heterogeneous flow fields, etc.) for which unknown stability
conditions are expected to be most severe.

From a practical point of view and granted these considera-
tions, we have to disagree here with the poor rating of the least-
squares space-time method for pure advection problems given
in the review article [8]; the statement was exclusively based
on the results of the Fourier mode analysis. Consequently, in full
accordance with our experiments and despite some theoretical
weaknesses appearing only in the Fourier analysis, we can
strongly recommend the present STILS-Galerkin approach for
robust solutions of practical advective problems (see examples
below). As a matter of fact, robustness seems to be provided

by the consistent Galerkin treatment—or ‘‘proper balancing™
[8]—of space and time derivatives in the symmetric, multidi-
mensional proposed equation. In this context it is clear that
introducing an artificial difference between steady-state and
transient problems is not meaningful (see Eqs. (1) and (3)),
since every component of the space-time characteristics and
gradients can be represented properly and with equal accuracy
in each of the four dimensions.

5. EXAMPLES

“Plug-Flow'’ in a Heterogeneous, Fractured Flow Field

We consider first a vertical domain composed of two layers
of high conductivity material (K = 107* m/s) hydraulically
connected by a fracture through an intervening layer of very
low conductivity (K = 107* m/s} as shown in Fig. 4a. This
{x, z) flow domain is discretized in 20 X 20 2D biquadratic
elements (Ax = Az = 1 m) and the fracture is identified by
means of 1D highly transmissive quadratic elements (Ke =
107* m%/s, where ¢ is the aperture of the fracture). Figure 4b
illustrates the steady-state heterogeneous Laplacian flow field
v generated under no-flow conditions on the sides of the domain
and imposed hydraulic heads at the lower (" = 100 m) and
upper (¥ = 50 m) corners,

Introducing the dimension £ and specifying constant concen-
trations at the lower left {# = 1) and right (# = 0) corners,
transient advection is then simulated with the suggested
*‘steady-state’” anisotropic diffusion operator. Figure 5 depicts
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(3.5.5.%)

(5.3,-75.4))

FIG.7. 2D curved flow domain in 4D (x, y, z, z) space: (a) finite element mesh at an arbitrary time level { = & (b) input Laplacian flow field (equipotentials

¥ and streamlines).

the 3D (x, z, {) domain and space-time streamlines, as well
as the space-time upstream and downstream boundaries with
Dirichlet (I')} and zero Neumann conditions (I';). From this
figure it is understood that the heterogeneous structure of the
space-time elementary layer (of thickness AZ) is obtained by
automatic generation of 2D and 3D elements from the 1D and
2D elements used for the (x, z) space discretization. The STILS-
Galerkin solutions at r* = 10,000 s and 20,000 s, obtained

after only 5 and 10 time steps (A =2 m, &r = 20005, § =
107* m/s, are reported on Fig. 6. Each of these 2D concentration
distributions (isolines) has to be interpreted as the intersection
of the 3D space-time ‘‘block solution’’ (isosurfaces) with the
plane (x, z, { = Bt*).

Attempts to solve this problem with the higher order CNTG
scheme—although using time steps that were reduced down
to 500 times—only resulted in overflow messages obviously
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FIG. 8. Advection over a curved surface. Solutions at ¢* = 28 s, 56 s,
and 84 s with initial condition u(x, ¥, z, 0) = exp(—{{x — 3.0512) +
(y — 1.8YH0.06).

due to local violations of some multidimensional drastic stabil-
ity conditions in the regions of high velocities.

On the other hand, both of the concentration distributions
on Fig. 6 show maximum ‘‘stable’” irregularities of + 7-8%
due to the problematic interpolation of sharp fronts. However,
the latter remain quite acceptable given the difficulty of the
problem (coarse space-time discretization) and these realistic
results can be reasonably interpreted. Since equal quantities of
fluid are flowing in from the lower left and righi corners, we
note that after about 20,000 s of flow (Fig. 6b) full mechanical
mixing is achieved by the fracture. Hence, past this time, the
endpoint of the fracture acts as a constant point source with
# = 0.5 in the upper layer where the front is much smoother
due to the mixing effects,

Advection in a Diverging—Converging Flow Field over a
Curved Surface

This second example consists of a surface with nonzero
curvature embedded in the 3D space (x, y, z). The manifold is
discretized as illustrated on Fig. 7a and a unity homogeneous
conductivity is enforced (K = 1 m/s). The streamlines of the
advective Laplacian flow field v given as input are shown on
Fig. 7b. Since the three conventional dimensions are already
used to represent this curved flow domain, we must work here
in a 4D context to take time into account. To do so, 3D rectangu-
lar and triangular prisms are automatically generated in the
{-direction on the base of the 2D curved quadrilaterals and
triangular elements given on Fig. 7a.

Four-dimensional steady-state **parabolic advection’” is then
simulated in the resulting 3D curved domain with an upstream
boundary { = 0 m (i.e., = 0s) on which an *‘initial’” Gaussian
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peak is specified. Space-time gradients and trajectories have,
hence, four components, but the block-solution still consists of
isosurfaces that may be intersected with *‘curved sections’” (x,
y, 2, { = Bt*), that is, the solutions in the 2D manifold at
given times t*. The STILS-Galerkin results for this problem
are shown on Fig. 8 at +* = 28, 56, and 84 s. Using a time
step of 25 (A{ = 2 m, 8 = 1 m/s) numerical irregularities
were smaller than *[% at all times. We note on Fig. 8 the
deformation of the initial Gaussian peak due to differential
acceleration—deceleration effects and to the diverging—con-
verging flow patterns. With the space-time discretization en-
forced in this example, it is seen that the intensity of the peak
is preserved throughout the flow domain and that the deformed
pulse leaves the mesh properly.

Seeking comparative results we tried to solve this “*smooth
front”” problem with the CNTG scheme. Unfortunately, and
even for quasi-infinitesimal time steps, the latter kept on deliv-
ering erratic solutions—if not overflow messages—due to spu-
rious instabilities perhaps amplified by the curvature of the
flow domain.

6. CONCLUSIONS

An original space-time diffusive-type model equation to
solve purely advective multidimensional linear transport prob-
lems has been developed and analyzed in this work. Theoretical
considerations regarding the equivalence of the advective equa-
tion with its diffusive counterpart are given and a new concep-
tual representation of transient advection is suggested. On the
basis of a very classical steady-state finite element technique,
the computational performances of the method are assessed in
terms of stability, accuracy, and robustness.

The efficiency of this new space-time integrated least-squares
approach and its related standard elliptic Galerkin algorithms
is demonstrated by means of two rather difficult problems in-
volving complex features, which could not be solved with the
higher order numerical techniques at hand. Extension of the
method to general nonlinear problems is now in progress and
will be reported in due time.
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